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COMPOSITION OPERATORS AND THEIR PRODUCTS ON L2(Σ)

M. R. Jabbarzadeh and S. Karimi

Abstract. The paper gives measure-theoretic characterizations of classical properties of
composition operators and their products on L2(Σ) such as complex symmetric and semi-Kato
type operators.

1. Introduction and preliminaries

Let (X, Σ, µ) be a complete sigma finite measure space. For any sub-sigma
finite algebra A ⊆ Σ, the L2-space L2(X,A, µ|A) is abbreviated by L2(A), and
its norm is denoted by ‖.‖2. All comparisons between two functions or two sets
are to be interpreted as holding up to a µ-null set. The support of a measurable
function f is defined by σ(f) = {x ∈ X : f(x) 6= 0}. We denote the linear
space of all complex-valued Σ-measurable functions on X by L0(Σ). Let ϕ be a
nonsingular measurable transformation from X into X; that is, µ◦ϕ−1 is absolutely
continuous with respect to µ and write µ ◦ϕ−1 ¿ µ. Let h be the Radon-Nikodym
derivative dµ ◦ ϕ−1/dµ. The pair (Σ, µ) is said to be normal invariant if ϕ(Σ) ⊆ Σ
and µ ¿ µ ◦ ϕ−1. The composition operator Cϕ : L2(Σ) → L0(Σ) induced by
ϕ is given by Cϕ(f) = f ◦ ϕ, for each f ∈ L2(Σ). Here, the non-singularity of
ϕ guarantees that Cϕ is well defined. It is well known fact that for u ∈ L0(Σ),
the multiplication operator Mu : L2(Σ) → L0(Σ) is bounded if and only if u ∈
L∞(Σ), and in this case, ‖Mu‖ = ‖u‖∞. Now, by the change of variables formula;∫

X
|f ◦ ϕ|2dµ =

∫
X

h|f |2dµ, ‖Cϕf‖2 = ‖M√
hf‖2 for each f ∈ L2(Σ). It follows

that Cϕ maps L2(Σ) boundedly into itself, if and only if h ∈ L∞(Σ), and in this
case, ‖Cϕ‖ = ‖h‖1/2

∞ . Some other basic facts about composition operators can be
found in [8, 19, 22].

For each f in L2(Σ) there is a unique function in L2(A), denoted EA(f), such
that, for every set A ∈ A of finite measure,

∫
A

fdµ =
∫

A
EA(f)dµ. EA(f) is called

the conditional expectation of f with respect to A, and EA is the conditional ex-
pectation operator. As an operator on L2(Σ), EA is the contractive orthogonal
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projection onto L2(A). Take A = ϕ−1(Σ). So for each function f in L2(Σ) there is
a Σ measurable function F such that Eϕ−1(Σ)f = F ◦ ϕ. Moreover, F is uniquely
determined in σ(h) (see [ca]). Therefore, even though ϕ is not invertible the ex-
pression F = (Eϕ−1(Σ)f) ◦ ϕ−1 is well defined. Note that domain of EA contains
L2(Σ)∪ {f ∈ L0(Σ) : f ≥ 0}. For further discussion of the conditional expectation
operator see [13] and [17]. A result of Hoover, Lambert and Quinn [9] shows that
the adjoint C∗ϕ of Cϕ on L2(Σ) is given by C∗ϕ(f) = hEϕ−1(Σ)(f)◦ϕ−1. From this it
easily follows that C∗ϕCϕ = Mh and CϕC∗ϕ = Mh◦ϕEϕ−1(Σ). The product Mu ◦ Cϕ

of Mu and Cϕ is called a weighted composition operator.
Products of operators appear more often in the service of the study of other

operators. More precisely, for any operator T , there exists a decomposition T =
(U+K)S, where U is a partial isometry, K is a compact operator and S is a strongly
irreducible operator [20]. Composition operators and their products have been
used to provide examples and illustrations of many operator theoretic properties.
In several cases major conjectures in operator theory have been reduced to the
(weighted) composition operators. The purpose of this note is to find some new
characterizations of composition operators on L2(Σ) and present a relationship
between Cϕ3 and their products.

2. On some classic properties of composition operators

Let H be the infinite dimensional complex Hilbert space and let B(H) be the
algebra of all bounded operators on H. For A ∈ B(H), the range and the null-space
of A are denote by R(A) and N (A), respectively.

Throughout this paper we assume that for i = 1, 2, ϕi : X → X is a nonsingular
measurable transformation and ϕ−1

i (Σ) is a relatively µ-complete sub-sigma finite
algebra of Σ. Put ϕ3 = ϕ1 ◦ϕ2, hi = dµ◦ϕ−1

i /dµ and Ei = Eϕ−1
i

(Σ). Then µ◦ϕ−1
3

is absolutely continuous with respect to µ, because the assumption µ ◦ ϕ−1
i ¿ µ

implies that for each A ∈ Σ with µ(A) = 0 we have µ(ϕ−1
1 (A)) = 0, and so

µ ◦ ϕ−1
3 (A) = µ(ϕ−1

2 (ϕ−1
1 (A))) = 0. It follows that Cϕ3 is a well-defined operator.

Take h3 = dµ ◦ ϕ−1
3 /dµ and E3 = Eϕ−1

3 (Σ). Note that if h1 and h2 are essentially
bounded, then for some M1 > 0 and M2 > 0, µ(ϕ−1

3 (A)) ≤ M2µ(ϕ−1
2 (A)) ≤

M2M1µ(A) for each A ∈ Σ. Hence h3 is essentially bounded and thus ϕ−1
3 (Σ) is a

sub-sigma finite algebra of Σ.

Proposition 2.1. For nonsingular measurable transformations ϕ1 and ϕ2,
let ϕ−1

3 (Σ) be a sub-sigma finite algebra of Σ. Then the following assertions hold.

(a) Cϕ3 = Cϕ2 ◦Cϕ1 ∈ B(L2(Σ)) if and only if h3 = h1E1(h2) ◦ ϕ−1
1 ∈ L∞(Σ)

and in this case ‖Cϕ3‖ = ‖h1E1(h2) ◦ ϕ−1
1 ‖1/2

∞ .
(b) Cϕ3 is injective if and only if Cϕ1 is injective and σ(E1(h2)) = X.

Proof. (a) Recall that Cϕ3 is bounded if and only if h3 ∈ L∞(Σ), and in this
case, ‖Cϕ3‖ = ‖h3‖1/2

∞ . Let A ∈ Σ. By using of conditional expectation operator
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and change of variables formula we have
∫

A

h3 dµ =
∫

ϕ−1
1 (A)

dµ ◦ ϕ−1
2 =

∫

ϕ−1
1 (A)

E1(h2) dµ

=
∫

A

E1(h2) ◦ ϕ−1
1 dµ ◦ ϕ−1

1 =
∫

A

h1E1(h2) ◦ ϕ−1
1 dµ.

It follows that h3 = h1E1(h2) ◦ ϕ−1
1 . Note that Cϕ2 is not necessarily bounded.

(b) Let f ∈ L2(Σ). It is easy to check that ‖Cϕi
f‖2 = ‖M√

hi
f‖2. SoN (Cϕi

) =
N (Mhi

) = L2(A,ΣA, µ|ΣA
), where A = X \ σ(hi) := (σ(hi))c and ΣA = {B ∩ A :

B ∈ Σ}. Thus, Cϕi is injective if and only if σ(hi) = X. Now, let A = {x ∈ X :
E1(h2) = 0}. Then A = ϕ−1

1 (B), for some B ∈ Σ. If µ(A) > 0, then µ(B) > 0
because µ ◦ ϕ−1

1 ¿ µ. Hence
∫

B

h1E1(h2) ◦ ϕ−1
1 dµ =

∫

A

E1(h2) dµ = 0,

and so h1 = 0 or E1(h2) ◦ ϕ−1
1 = 0 on B. Therefore, h1 > 0 and E1(h2) ◦ ϕ−1

1 >
0 implies that E1(h2) > 0. Now, let E1(h2) > 0. Since E1(h2) is a ϕ−1

1 (Σ)-
measurable, then there exists a unique g ∈ L0(Σ), with σ(g) ⊆ σ(h1), such that
E1(h2) = g ◦ ϕ1 (see [[]Lemma 2]ca). It follows that 0 <

∫
X

g ◦ ϕ1dµ =
∫

X
h1gdµ,

and so E1(h2) ◦ ϕ−1
1 = g > 0 on σ(h1). We conclude that σ(h3) = X if and only if

σ(h1) = σ(E1(h2)) = X.

Lemma 2.2. Let Cϕi ∈ B(L2(Σ)) and ϕ3 = ϕ1 ◦ ϕ2. Then the following
assertions hold.

(a) h3 ◦ ϕ3 = (h1 ◦ ϕ3)E1(h2) ◦ ϕ2.

(b) C∗ϕ3
(f) = h1E1(h2E2(f) ◦ ϕ−1

2 ) ◦ ϕ−1
1 .

(c) C∗ϕ3
Cϕ3(f) = (h1E1(h2) ◦ ϕ−1

1 )f .

(d) Cϕ3C
∗
ϕ3

(f) = (h1 ◦ ϕ3)E1(h2(E2f) ◦ ϕ−1
2 ) ◦ ϕ2.

(e) C∗ϕ3
Cϕ3Cϕ3(f) = (h1E1(h2) ◦ ϕ−1

1 )f ◦ ϕ3.

(f) Cϕ3C
∗
ϕ3

Cϕ3(f) = ((h1 ◦ ϕ3)E1(h2) ◦ ϕ2)f ◦ ϕ3.

Proof. Part (a) follows from Proposition 2.1(a). To prove (b), let f ∈ L2(Σ).
Then

C∗ϕ3
(f) = C∗ϕ1

(C∗ϕ2
(f)) = C∗ϕ1

(h2E2(f) ◦ ϕ−1
2 ) = h1E1(h2E2(f) ◦ ϕ−1

2 ) ◦ ϕ−1
1 .

The remainder of the proof is left to the reader.
Let [T, S] = TS−ST for T and S in B(H). An operator T ∈ B(H) is said to be

normal if [T, T ∗] = 0, quasinormal if [T, T ∗T ] = 0 and hyponormal if [T, T ∗] ≥ 0.

Lemma 2.3. Let Cϕ ∈ B(L2(Σ)). Then the following assertions hold.
(a) Cϕ is normal if and only if ϕ−1(Σ) = Σ and h = h ◦ ϕ [22].
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(b) Cϕ is quasinormal if and only if h = h ◦ ϕ [22].

(c) Cϕ is hyponormal if and only if h > 0 and (h ◦ ϕ)Eϕ−1(Σ)( 1
h ) ≤ 1 [12].

Lemma 2.4. Let 1 ≤ i, j ≤ 3, Cϕi ∈ B(L2(Σ)) and ϕ3 = ϕ1 ◦ ϕ2. Then
σ(Ei(hj) ◦ ϕj) = X and for each f ∈ L2(Σ),

E3(f) =
E1(h2E2(f) ◦ ϕ−1

2 ) ◦ ϕ2

E1(h2) ◦ ϕ2
.

Proof. It is easy to see that σ(Ei(hj) ◦ ϕj) = ϕ−1
j σ(Ei(hj)) ⊇ ϕ−1

j σ(hj) =
σ(hj ◦ ϕj) = X. Now, from Cϕ3C

∗
ϕ3

= Mh3◦ϕ3E3 and Lemma 2.2(c) we obtain

E3(f) =
(h1 ◦ ϕ3)E1(h2E2(f) ◦ ϕ−1

2 ) ◦ ϕ2

h3 ◦ ϕ3
.

But, by Lemma 2.2(a) we get that

h1 ◦ ϕ3

h3 ◦ ϕ3
=

χ(E1(h2)◦ϕ2)

E1(h2) ◦ ϕ2
=

1
E1(h2) ◦ ϕ2

.

This completes the proof.
Assertion (a) of the following proposition is known (see [16]). However for

completeness, we provide a new proof.

Proposition 2.5. Let Cϕi ∈ B(L2(Σ)) with h1 ◦ ϕ2 = h1 and h2 ◦ ϕ1 = h2.
(a) If Cϕ1 and Cϕ2 are normal (quasinormal), then Cϕ3 is a normal (quasi-

normal) operator.
(b) If Cϕ1 and Cϕ2 are hyponormal and E2(h2) ◦ ϕ−1

2 is a ϕ−1
1 (Σ)-measurable

function, then Cϕ3 is a hyponormal operator.

Proof. (a) Let Cϕ1 and Cϕ2 are normal operators. Obviously ϕ−1
3 (Σ) = Σ. By

hypotheses we get that

h1 ◦ ϕ3 = (h1 ◦ ϕ1) ◦ ϕ2 = h1 ◦ ϕ2 = h1,

E1(h2) ◦ ϕ2 = h2 ◦ ϕ2 = h2 = E1(h2) ◦ ϕ−1
1 .

Now, by Lemma 2.2(a), we get that

h3 ◦ ϕ3 = (h1 ◦ ϕ3)E1(h2) ◦ ϕ2 = h1E1(h2) ◦ ϕ−1
1 = h3.

(b) By hypotheses we have

(hi ◦ ϕi)Ei(
1
hi

) ≤ 1, hi > 0 (i = 1, 2),

E2(h1) = h1 = E2(h1) ◦ ϕ−1
2 , E1(h2) = h2 = E1(h2) ◦ ϕ−1

1 ,

E2(
1
h2

) ◦ ϕ−1
2 =

1
E2(h2) ◦ ϕ−1

2

∈ L0(ϕ−1
1 (Σ)),
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and by Proposition 2.1(b), σ(h3) = X because σ(h1) = X and σ(E1(h2)) ⊇ σ(h2) =
X. Then we have

(h3 ◦ ϕ3)E3(
1
h3

) = (h1 ◦ ϕ3)E1(h2E2(
1

h1E1(h2) ◦ ϕ−1
1

) ◦ ϕ−1
2 ) ◦ ϕ2

= (h1 ◦ ϕ3)(h2 ◦ ϕ2)E1(
1

E2(h1) ◦ ϕ−1
2

E2(
1

E1(h2) ◦ ϕ−1
1

) ◦ ϕ−1
2 ) ◦ ϕ2

= (h1 ◦ ϕ3)(h2 ◦ ϕ2)E2(
1
h2

)E1(
1
h1

) ◦ ϕ2

= {(h2 ◦ ϕ2)E2(
1
h2

)}{(h1 ◦ ϕ1)E1(
1
h1

)} ◦ ϕ2 ≤ 1.

In [6], Douglas proved that when A, B ∈ B(H), then AA∗ ≤ λBB∗ for some
λ ≥ 0; if and only if A = BC for some C ∈ B(H).

Proposition 2.6. Let Cϕi
∈ B(L2(Σ)). Then h3 ≤ λ1h1 and h3 ◦ ϕ3 ≤

λ2(h2 ◦ ϕ2) for some λi ≥ 0.

Proof. Since Cϕ3 = Cϕ2 ◦ Cϕ1 , by Douglas’ theorem, there exists λi ≥ 0 such
that C∗ϕ3

Cϕ3 ≤ λ1C
∗
ϕ1

Cϕ1 and Cϕ3C
∗
ϕ3
≤ λ2Cϕ2C

∗
ϕ2

. Then for each f, g ∈ L2(Σ) we
have 〈h3f, f〉 ≤ 〈λ1h1f, f〉 and 〈h3◦ϕ3E3(g), g〉 ≤ 〈λ2(h2◦ϕ2)E2(g), g〉. For A ∈ Σ,
take f = χA and g = χϕ−1

3 (A). Since E3(g) = g = E2(g), we get that
∫

A
h3dµ ≤∫

A
λ1h1dµ and

∫
ϕ−1

3 (A)
(h3 ◦ ϕ3)dµ ≤ ∫

ϕ−1
3 (A)

λ2(h2 ◦ ϕ2)dµ. This completes the
proof.

Write X =
(⋃

n∈NAn

)∪B, where {An}n∈N is a countable collection of pairwise
disjoint atoms and B, being disjoint from each An, is non-atomic (see [23]). In [4],
Chan proved that Mu is compact on L2(Σ) if and only if for any ε > 0, the set
{x ∈ X : |u(x)| ≥ ε} consists of finitely many atoms. In the following, we give a
sufficient condition for the product of a composition operator Cϕ1 with the adjoint
of a composition operator C∗ϕ2

on L2(Σ) to be compact. The order of the product
gives rise to two different cases (see [5] and [21]).

Proposition 2.7. Let Cϕi ∈ B(L2(Σ)) for i = 1, 2. Then the following
assertions hold.

(a) If for each ε > 0, the set {x ∈ X : h2(ϕ1(x)) ≥ ε} consists of finitely many
atoms, then Cϕ1C

∗
ϕ2

is compact.

(b) If for each ε > 0, the set {x ∈ X : h1(x)(E1(h2◦ϕ2)◦ϕ−1
1 )(x) ≥ ε} consists

of finitely many atoms, then C∗ϕ2
Cϕ1 is compact.

Proof. For f ∈ L2(Σ) it is seen that

Cϕ1C
∗
ϕ2

(f) = h2 ◦ ϕ1(E2(f) ◦ ϕ−1
2 ) ◦ ϕ1;

C∗ϕ2
Cϕ1(f) = h2E2(f ◦ ϕ1) ◦ ϕ−1

2 .

Using change of variable formula and inequality |E2(f)|2 ≤ E2(|f |2), we obtain

‖Cϕ1C
∗
ϕ2

(f)‖2 =
∫

X

h2
2 ◦ ϕ1|E2(f) ◦ ϕ−1

2 |2 ◦ ϕ1 dµ =
∫

X

h1h
2
2|E2(f) ◦ ϕ−1

2 |2 dµ
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=
∫

X

h1h2|E2(f)|2 ◦ ϕ−1
2 dµ ◦ ϕ−1

2 =
∫

X

(h1 ◦ ϕ2)(h2 ◦ ϕ2)|E2(f)|2 dµ

≤
∫

X

(h1 ◦ ϕ2)(h2 ◦ ϕ2)E2(|f |2) dµ = ‖M√
(h1◦ϕ2)(h2◦ϕ2)

f‖2.

Similarly,

‖C∗ϕ2
Cϕ1(f)‖2 =

∫

X

h2
2|E2(f ◦ ϕ1) ◦ ϕ−1

2 |2 dµ =
∫

X

h2|E2(f ◦ ϕ1)|2 ◦ ϕ−1
2 dµ ◦ ϕ−1

2

=
∫

X

(h2 ◦ ϕ2)|E2(f ◦ ϕ1)|2 dµ ≤
∫

X

(h2 ◦ ϕ2)E2(|f |2 ◦ ϕ1) dµ

=
∫

X

(h2 ◦ ϕ2)|f |2 ◦ ϕ1 dµ =
∫

X

h1E1(h2 ◦ ϕ2) ◦ ϕ−1
1 |f |2 dµ

= ‖M√
h1E1(h2◦ϕ2)◦ϕ−1

1
f‖2.

Now, the desired conclusions follows from the compactness criteria for multiplica-
tion operators.

Proposition 2.8. Let Cϕi ∈ B(L2(Σ)) for i = 1, 2. Then the following
assertions hold.

(a) If h3 is bounded away from zero on σ(h3) and σ(E1(h2) ◦ ϕ−1
1 ) = X, then

R(Cϕ1) is closed.
(b) Let Cϕ1 and Cϕ2 have closed range. If σ(h2) = X or σ(h2)c = Ai1 ∪ · · · ∪

Aik
, then Cϕ3 has closed range.

Proof. (a) Let f ∈ L2(Σ). Then ‖M√
h3

f‖2 ≤ ‖Cϕ2‖ ‖M√
h1

f‖2. Recall that
for u ∈ L∞(Σ), R(Mu) is closed in L2(Σ) if and only if u is bounded away from
zero on σ(u) [18]. Thus there exists λ ≥ 0 such that λ‖f‖2 ≤ ‖M√

h1
f‖2 for each

f ∈ L2(σ(h3)). Since σ(E1(h2) ◦ ϕ−1
1 ) = X, then σ(h1) = σ(h3), and so R(Cϕ1) is

closed
(b) It is a classical fact that Cϕ3 has closed range if and only if N (Cϕ2) +

L2(ϕ−1
1 (Σ)) is closed (see [15, Corollary 1]. Now, by assumptions, N (Cϕ2) = {0}

or N (Cϕ2) is a finite dimensional subspace of L2(Σ), and hence Cϕ3 has closed
range.

3. Complex symmetric, semi-Kato type and polar decomposition
of composition operators

A conjugation on a Hilbert space H is an anti-linear operator S : H → H which
satisfies 〈Sx, Sy〉 = 〈y, x〉 for all x, y ∈ H and S2 = I. An operator T ∈ B(H) is said
to be complex symmetric if there exists a conjugation S on H such that T = ST ∗S.
The class of complex symmetric operators is unexpectedly large. We refer the
reader to [7, 10] for more details, including historical comments and references.

Theorem 3.1. Let ϕ2 = id, the identity transformation, and let 0 < h ∈
L∞(ϕ−1(Σ)). Then the operator Cϕ is complex symmetric.
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Proof. Put E = Eϕ−1(Σ) and define S(f) := f̄◦ϕ√
h◦ϕ . Then for each f ∈ L2(Σ)

we have

SC∗ϕS(f) = S(hE(S(f))ϕ−1) =
(h ◦ ϕ)E(S(f̄))√

h ◦ ϕ
=

√
h ◦ ϕ S(f̄) = Cϕ(f),

and

〈S(f), S(g)〉 =
∫

X

(f̄ ◦ ϕ)(g ◦ ϕ)
h ◦ ϕ

dµ =
∫

X

hf̄g

h
dµ = 〈g, f〉.

It follows that Cϕ is a complex symmetric operator if and only if

S2(f) =
f ◦ ϕ2

√
(h ◦ ϕ)(h ◦ ϕ2)

= f, f ∈ L2(Σ).

Since by hypotheses ϕ2 = id and E(h) = h, then

1 =
dµ ◦ ϕ−2

dµ
= hE(h) ◦ ϕ−1 = h(h ◦ ϕ−1).

Thus, (h ◦ ϕ2)(h ◦ ϕ) = 1 and so S2 = I.

Corollary 3.2. Let ϕ be a measure preserving transformation, i.e.,
µ(ϕ−1(A)) = µ(A) for all A ∈ Σ. Then Cϕ is a complex symmetric operator on
L2(Σ) if and only if C2

ϕ = I, the identity operator.

In [11], the authors obtain some necessary conditions for Cϕ and C∗ϕ acting on
H2 for which C∗ϕCϕ and Cϕ+C∗ϕ commute. They prove that if ϕ is an automorphism
of the open unit disk D, then [C∗ϕCϕ, Cϕ + C∗ϕ] = 0 if and only if Cϕ is normal. In
the following we obtain a similar result for Cϕ ∈ B(L2(Σ)).

Proposition 3.3. Let Cϕ ∈ B(L2(Σ)). If Cϕ is quasinormal, then
[C∗ϕCϕ, Cϕ + C∗ϕ] = 0.

Proof. Let f ∈ L2(Σ). Since h = h ◦ ϕ, then we have

(Cϕ + C∗ϕ)(C∗ϕCϕ(f)) = (h ◦ ϕ)(f ◦ ϕ) + hE(hf) ◦ ϕ−1

= h(f ◦ ϕ) + hE((h ◦ ϕ)f) ◦ ϕ−1 = h(f ◦ ϕ) + h2E(f) ◦ ϕ−1

= C∗ϕCϕ(Cϕ + C∗ϕ)(f),

and so [C∗ϕCϕ, Cϕ + C∗ϕ](f) = 0.

Definition 3.4. We say that A ∈ B(H) is an operator of semi-Kato type, if
the null space of A is contained in ∩∞n=1R(An).

Recall that A ∈ B(H) is said to be Kato if R(A) is closed and N (A) ⊆⋂∞
n=1R(An). Any bounded operator that is either onto or bounded below is Kato

(see [14]). The set of all semi-Kato and Kato type operators will be denoted by
SK(H) and K(H) respectively. Obviously, K(H) ⊆ SK(H). Also, if A ∈ SK(H)
and for each n ∈ N, An has closed range, then A ∈ K(H).
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Theorem 3.5. For i = 1, 2, 3, put Σ i
∞ =

⋂∞
n=1 ϕ−n

i (Σ) and let Cϕi
∈

B(L2(Σ)). Then the following assertions hold.
(a) If Cϕi

∈ SK(L2(Σ)) if and only if Σ ∩ (σ(hi))c ⊆ Σ i
∞.

(b) Cϕi
∈ K(L2(Σ)) if and only if, for each n ∈ N, hi,n is bounded away from

zero on σ(hi,n) and Σ ∩ (σ(hi))c ⊆ Σ i
∞.

(c) If Cϕi
∈ SK(L2(Σ)), σ(E1(h2) ◦ ϕ−1

1 ) = σ(E1(h2)) and Σ 1
∞ ∪ Σ 2

∞ ⊆ Σ 3
∞,

then Cϕ3 ∈ SK(L2(Σ)).
(d) If Cϕ3 ∈ SK(L2(Σ)) and ϕ1 ◦ ϕ2 = ϕ2 ◦ ϕ1, then Cϕ1 ∈ SK(L2(Σ)).

Proof. (a) Note that Cϕi
∈ SK(L2(Σ)), if N (Cϕi

) ⊆ ⋂∞
n=1R(Cϕn

i
). Since

R(Cϕn
i
) = L2(ϕ−n

i (Σ)) and N (Cϕi
) = L2(Σ ∩ (σ(hi))c), it follows that if Cϕi

∈
SK(L2(Σ)) then L2(Σ ∩ (σ(hi))c) ⊆ ⋂∞

n=1 L2(ϕ−n
i (Σ)) = L2(

⋂∞
n=1 ϕ−n

i (Σ)) =
L2(Σ i

∞), and so Σ ∩ (σ(hi))c ⊆ Σ i
∞. Conversely, if Σ ∩ (σ(hi))c ⊆ Σ i

∞ then
N (Cϕi

) = L2(Σ ∩ (σ(hi))c) ⊆ L2(Σ i
∞) =

⋂∞
n=1 L2(ϕ−n

i (Σ)) =
⋂∞

n=1R(Cn
ϕi

).

(b) Let Cϕi ∈ K(L2(Σ)). Then for each n ∈ N, R(Cn
ϕi

) is closed and so
hi,n := dµ ◦ ϕ−n

i /dµ is bounded away from zero on σ(hi,n). Also, we have L2(Σ ∩
(σ(hi))c) = N (Cϕi

) ⊆ ⋂∞
n=1R(Cn

ϕi
) = L2(Σ i

∞). On the other hand, if for each
n ∈ N, hi,n is bounded away from zero on its support and Σ∩ (σ(hi))c ⊆ Σ i

∞, then
R(Cn

ϕi
) = R(Cn

ϕi
) and N (Cϕi) ⊆

⋂∞
n=1R(Cn

ϕi
).

(c) For i = 1, 2, let Cϕi ∈ SK(L2(Σ)) and σ(E1(h2) ◦ϕ−1
1 ) = σ(E1(h2)). Then

we have (σ(h3))c ∩ Σ = {σ(h1) ∩ σ(E1(h2))}c ∩ Σ ⊆ {(σ(h1))c ∪ (σ(h2))c} ∩ Σ ⊆
Σ 1
∞ ∪ Σ 2

∞ ⊆ Σ 3
∞. hence by (a), Cϕ3 ∈ SK(L2(Σ)). Note that Σ 3

∞ ⊆ Σ 1
∞ ∪ Σ 2

∞,
because, in general, Σ 3

∞ ⊆ Σ 2
∞.

(d) If ϕ1 ◦ ϕ2 = ϕ2 ◦ ϕ1, then Σ 3
∞ ⊆ Σ 1

∞. Hence if Cϕ3 ∈ SK(L2(Σ)) and
ϕ1 ◦ ϕ2 = ϕ2 ◦ ϕ1, then Cϕ1 ∈ SK(L2(Σ)) because σ(h3) ⊆ σ(h1).

We recall that every operator T ∈ B(H) can be decomposed into T = U |T |
with a partial isometry U , where |T | = (T ∗T )

1
2 . U is determined uniquely by

the kernel condition N (U) = N (|T |), then this decomposition is called the polar
decomposition. Notice that the parts of the polar decomposition V , |W | for W =
Mu ◦ Cϕ are given by

V = Mχσ(J◦ϕ)√
J◦ϕ

W, |W | = M√
J ,

where J = hEϕ−1(Σ)(|u|2) ◦ϕ−1 (see [3]). Hence by Proposition 2.1(a) the parts of
the polar decomposition Cϕ3 = Uϕ3 |Cϕ3 | are given by

|Cϕ3 |(f) =
√

h1E1(h2) ◦ ϕ−1
1 f,

Uϕ3(f) =
f ◦ ϕ3√

(h1 ◦ ϕ3)E1(h2) ◦ ϕ2

.

Since h3 ◦ ϕ3 > 0, then N (Uϕ3) = N (Cϕ3) = L2((σ(h3))c) = N (|Cϕ3 |). It is easy
to see that Uϕ3U

∗
ϕ3

Uϕ3 = Uϕ3 , and so Uϕ3 is a partial isometry. Also, the second



Composition operators and their products 9

part of C∗ϕ3
= Uϕ3 |C∗ϕ3

| is given by

|C∗ϕ3
|(f) =

√
(h1 ◦ ϕ3)E1(h2) ◦ ϕ2 E3(f).

Recall that the Aluthge transform of T = U |T | ∈ B(H) is the operator T̃ given
by T̃ = |T | 12 U |T | 12 . For 0 < r ≤ 1, put Tr := |T |rU |T |1−r (see [1]). Then T 1

2
= T̃ .

Now, take T = Cϕ3 . Then we have

Trf = |T |rU(h
1−r
2

3 f) = |T |r(( 1
h3 ◦ ϕ3

)
r
2 f ◦ ϕ3) = (

h3

h3 ◦ ϕ3
)

r
2 f ◦ ϕ3.

Put ωr := ( h3
h3◦ϕ3

)r/2. Then Trf = ωr.f ◦ ϕ3 is a weighted composition operator.
The parts of the polar decomposition Vr, |Tr| for Tr are given by

|Tr|(f) =
√

h3E3(ω2
r) ◦ ϕ−1

3 f ;

Vrf =
χσ(E3(ω2

r))Trf√
(h3 ◦ ϕ3)E3(ω2

r)
.

Example 3.6. Let X = N, Σ = 2N and let µ be the counting measure. Define

ϕ1(n) =
{

1, n = 1, 2
n− 1, n ≥ 3,

and ϕ2(n) = n + 1. Then

h1(n) = µ(ϕ−1
1 (n)) =

{
2, n = 1
1, n ≥ 2;

h2(n) = µ(ϕ−1
2 (n)) =

{
0, n = 1
1, n ≥ 2;

E1(h2)(n) =
{ 1

2 , n = 1, 2
1, n ≥ 3;

h3(n) =
∑

k∈ϕ−1
1 (n)

h2(k) = 1.

It follows that the injectivity condition for Cϕ2 in Proposition 2.1 is not necessary.
Moreover, since ϕ3 is the identity function, by Corollary 3.2, Cϕ3 is a complex
symmetric operator but neither Cϕ1 nor Cϕ2 is a complex symmetric operator.

Example 3.7. (a) Let X = [0, 1], dµ = dx and Σ be the Lebesgue sets. Define
the non-singular transformations ϕi : X → X by

ϕ1(x) =
{

2x, x ∈ [0, 1
2 ]

2x− 1, x ∈ ( 1
2 , 1],

f2(x) =
{

1− 2x, x ∈ [0, 1
2 ]

2x− 1, x ∈ ( 1
2 , 1].

Then

ϕ3(x) =





1− 4x, x ∈ [0, 1
4 )

2− 4x, x ∈ [ 14 , 1
2 )

4x− 2, x ∈ [ 12 , 3
4 )

4x− 3, x ∈ [ 34 , 1],
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and so h1(x) = h2(x) = h3(x) = 1. Moreover, we can obtain from direct computa-
tions that

E1(f)(x) =
1
2
{f(x) + f(

1 + 2x

2
)}χ[0, 1

2 ] +
1
2
{f(

2x− 1
2

) + f(x)}χ( 1
2 ,1],

E2(f)(x) =
1
2
{f(x) + f(1− x)},

and

|C∗ϕ3
|(f) = E3(f)(x) =

1
2





f(1−4x
2 ) + f(1− 2x), x ∈ [0, 1

4 )

f(1− 2x) + f( 3−4x
2 ), x ∈ [ 14 , 1

2 )

f(2x− 1) + f( 4x−1
2 ), x ∈ [ 12 , 3

4 )

f(4x−3
2 ) + f(2x− 1), x ∈ [ 34 , 1],

for all f ∈ L2(Σ). Note that for each i = 1, 2, 3 and 0 < r ≤ 1, (Cϕi
)r = Cϕi

= C̃ϕi
.

Furthermore, Cϕi is injective, quasinormal and has closed range but not normal
operator.

(b) Let X = N, Σ = 2N and let µ({n}) = mn, where w := {mn}n ⊂ (0,∞).
Let f = {fn} ∈ l2(w). Then for i = 1, 2 we have

hi(k) =
1

mk

∫

{k}
hi dµ =

1
mk

∫

ϕ−1
i

({k})
dµ =

1
mk

∑

j∈ϕ−1
i

({k})
mj ,

(hiEi(f) ◦ ϕ−1
i )(k) =

1
mk

∫

ϕ−1
i

({k})
Ei(f) dµ =

1
mk

∑

j∈ϕ−1
i

({k})
fjmj .

Now, by these computations we obtain

h3(k) =
1

mk

∑

j∈ϕ−1
1 ({k})

h2(j)mj =
1

mk

∑

j∈ϕ−1
1 ({k})

∑

l∈ϕ−1
2 ({j})

ml.
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