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Abstract. In this paper one of the important tasks of modern computer geometry is being
considered. The main idea of this task is to create gluing flat images algorithms of the same flat
object in space. We can get image data with the help of the central projection from different
points of space. We construct a numerical simulation for each of the algorithms—a simple linear,
normalized linear and direct. The accuracy to a perturbation of the initial data is being estimated.
The speed of the algorithms are being calculated.

The results confirm the hypothesis of Nosovskíı and Skripka that their proposed direct
algorithm is the most accurate to perturbation coordinates of conjugate points.

1. Introduction

In recent years, the field of application of digital image processing has expanded
considerably. Image analysis is used in the research, industry, medicine, space
research and information systems.

In this paper, problem of constructing algorithms of gluing flat images of the
same object is considered. Several images of the same object are obtained as central
projections from the different viewing points (Figure 1).

Fig. 1. Multiple images of the same object
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1



2 A.Yu.Chekunov

We assume that the object is approximately flat with the respect to distances
between the object and the viewing points. From the geometric point of view
the problem can be formulated as a problem of finding the projective mapping F
which bounds two domains D1 and D2 placed in the same affine coordinate map
of a projective plane RP 2 (Figure 2).

Fig. 2. Projective mapping F of two domains D1 and D2

In order to solve this problem it’s necessary:

• To recognize enough quantity of pairs of points which reflect the same point
on the image so called conjugate points;

• To create a robust algorithm for projective mapping calculation and to estimate
its accuracy on the perturbed initial data.

In this paper, the second step is considered, i.e., it is assumed that some
number of conjugate points have already been found with some error. The problem
is to find the most robust algorithm for calculation the projective mapping. The
following algorithms are analyzed:

• The simple linear algorithm.

• The normalized linear algorithm.

• The direct algorithm.

The simple and normalized linear algorithms are well-known algorithms which
are extensively used in medicine, space research and robotics. The direct algorithm
is a new algorithm which was proposed by Nosovskíı and Skripka in [3].

In the paper of Nosovskíı and Tolchennikov [2], it was shown that commonly
used linear algorithms have a significant disadvantage: unstable work in the case
of inaccurately found coordinates of conjugate points. Nosovskíı and Skripka [3]
formed the hypothesis that the direct algorithm is faster and more robust comparing
to the known linear algorithms. In this paper, the results of the computer mod-
elling confirm the hypothesis of Nosovskíı and Skripka that their proposed direct
algorithm is the most accurate and fast to perturbation coordinates of conjugate
points.
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2. Theoretical analysis of algorithms

We describe the considered algorithms of projective mapping calculation and
define the fixed matrix representation for the projective mapping.

First of all, recall that the projective mapping F is fully determined by any
4 points Xi ∈ RP 2, 1 ≤ i ≤ 4, situated in general position and their images
X ′

i ∈ RP 2, 1 ≤ i ≤ 4, also situated in general position:

F (Xi) = X ′
i, where 1 ≤ i ≤ 4,

and F is represented by a set of unknown variables (fjk) (1 ≤ j, k ≤ 3) which are
organized in a square 3×3 matrix F representing a linear operator R3 → R3 which
corresponds to the mapping F .

We will assume that all 8 points Xi and X ′
i belong to the affine chart S3 =

{(x1, x2, x3) : x3 6= 0} ⊂ RP 2 and their coordinates are represented by the following
three-dimensional vectors:

Xi = (xi, yi, zi), 1 ≤ i ≤ 4,

X ′
i = (x′i, y

′
i, z

′
i), 1 ≤ i ≤ 4.

2.1. The simple linear algorithm

The equation F (Xi) = X ′
i is equivalent to F (Xi) × X ′

i = 0 in homogeneous
coordinates. Let us denote the rows with index j as (f j)T . In this denotations:

F (Xi)×X ′
i =




0T −z′iX
T
i y′iX

T
i

z′iX
T
i 0T −x′iX

T
i

−y′iX
T
i x′iX

T
i 0T


 = Cif (1 ≤ i ≤ 4).

The third row of matrix Ci is a linear combination of its first and second row. For
projective mapping calculation we solve system of linear equations Af = 0 where
A is a 8 × 9 matrix combined from 2 × 9 matrices Ai without the third row of
matrix Ci:

A =




A1
...

An


 ; Ai =

(
0T −z′iX

T
i y′iX

T
i

z′iX
T
i 0T −x′iX

T
i

)
.

Now, instead of the true points Xi ∈ RP 2, 1 ≤ i ≤ 4 and X ′
i ∈ RP 2, 1 ≤ i ≤ 4,

perturbed sets of points X̃i ∈ RP 2, 1 ≤ i ≤ 4 and X̃ ′
i ∈ RP 2, 1 ≤ i ≤ 4 are given:

X̃i = (x̃i, ỹi, z̃i) = (xi +4xi, yi +4yi, zi) 1 ≤ i ≤ 4,

X̃ ′
i = (x̃′i, ỹ′i, z̃′i) = (x′i +4x′i, y

′
i +4y′i, z

′
i) 1 ≤ i ≤ 4.

It is known that the points Xi and X ′
i are linked by a projective mapping F . In

order to calculate unknown projective mapping F̃ by the simple linear algorithm
we do the following steps:
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• According to the correspondences X̃i ↔ X̃ ′
i, we build the matrices Ãi and Ã

using the above formulas.
• Calculate a vector f , at which the minimum of function ||Ãf || is reached with

the condition ||f || = 1.

• Denote F̃ =




f̃1 f̃2 f̃3

f̃4 f̃5 f̃6

f̃7 f̃8 f̃9


.

Let us formulate an important lemma:

Lemma 1. Let A be a matrix of size m×n and let g be a column vector of size
n × 1. Assume that the minimum norm of ‖Ag‖, provided ‖g‖ = 1, is reached on
the vector g (where ‖ · ‖ is the Euclidean vector norm). Then g is the normalized
eigenvector of the matrix AT A, corresponding to its minimum eigenvalue.

Proof. Contained in [2].
The idea of simple linear algorithm is to find the normalized eigenvector of a

square matrix of special type of size 9×9 corresponding to its minimum eigenvalue.

2.2. The normalized linear algorithm
In order to calculate unknown projective mapping F̃ by the normalized linear

algorithm we do following steps:
• Let T0 be a mapping such that the mass center of points T0X̃i is at the origin,

and the average distance from these points to the origin is equal to
√

2.
• Let T ′0 be a mapping such that for T ′0X̃ ′

i points the same conditions are ful-
filled.

• Run SLA for T0X̃i ↔ T ′0X̃ ′
i for calculation of the mapping F̃0.

• Denote F̃ = (T ′0)
−1 F̃0 T0.

The simple linear algorithm is not invariant with respect to the plane motion.
The normalized linear algorithm is invariant with the respect to the plane motion,
which is the main difference between these algorithms.

2.3. The direct algorithm
We assume that unknown projective mapping F maps 4 points P, Q, R, T ∈

RP 2 situated in general position onto 4 points P ′, Q′, R′, T ′ ∈ RP 2 also situated
in general position, respectively:

F (P ) = P ′; F (Q) = Q′; F (R) = R′; F (T ) = T ′.

The mapping F can be represented by a set of unknown variables (fij) (1 ≤ i, j ≤ 3)
which are organized in a square 3 × 3 matrix F of the linear operator R3 → R3

which corresponds to the mapping F . We assume that all 8 points P, Q,R, T and
P ′, Q′, R′, T ′ belong to the affine chart S3 = {(x1, x2, x3) : x3 = 1} ⊂ RP 2 and
their coordinates are represented by the following three-dimensional vectors:

P = (p1, p2, 1), Q = (q1, q2, 1), R = (r1, r2, 1), T = (t1, t2, 1),

P ′ = (p′1, p
′
2, 1), Q′ = (q′1, q

′
2, q

′
3), R′ = (r′1, r

′
2, r

′
3), T ′ = (t′1, t

′
2, t

′
3).
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The third coordinate of the first four conjugate points P,Q, R, T is equal to 1 due
to the fact that S3 is an affine chart. In order to obtain the unique presentation
of the projective mapping by a matrix, we assume that the third coordinate of one
of the second four conjugate points P ′, Q′, R′, T ′ is also equal to 1 (without loss of
generality, p′3 = 1). The other third coordinates of points Q′, R′, T ′ are arbitrary
(in this case, they are denoted by q′3, r

′
3, t

′
3).

We use the following notations:

ap = p′1, bp = p′2, aq =
q′1
q′3

, bq =
q′2
q′3

,

ar =
r′1
r′3

, br =
r′2
r′3

, at =
t′1
t′3

, bt =
t′2
t′3

.

We consider the system of linear equations Ax = y, where x and y are vectors
formed by the unknown variables:

x = (f11, f12, f13, f21, f22, f23, f31, f32, f33, q
′
3, r

′
3, t

′
3)

T ,

y = (ap, 0, 0, 0, bp, 0, 0, 0, 1, 0, 0, 0)T ,

where A is given by:

A =




p1 p2 1 0 0 0 0 0 0 0 0 0
q1 q2 1 0 0 0 0 0 0 −aq 0 0
r1 r2 1 0 0 0 0 0 0 0 −ar 0
t1 t2 1 0 0 0 0 0 0 0 0 −at

0 0 0 p1 p2 1 0 0 0 0 0 0
0 0 0 q1 q2 1 0 0 0 −bq 0 0
0 0 0 r1 r2 1 0 0 0 0 −br 0
0 0 0 t1 t2 1 0 0 0 0 0 −bt

0 0 0 0 0 0 p1 p2 1 0 0 0
0 0 0 0 0 0 q1 q2 1 −1 0 0
0 0 0 0 0 0 r1 r2 1 0 −1 0
0 0 0 0 0 0 t1 t2 1 0 0 −1




The system Ax = y consists of 12 linear equations with 12 unknown variables:
9 elements fij of the projective mapping and 3 unknown point coordinates q′3, r

′
3, t

′
3

(note that the matrix A contains known values only).

If the points {P, Q,R, T} and {P ′, Q′, R′, T ′} in both sets are situated in the
general position then the matrix A is non-degenerate. After perturbation of conju-
gate points we get a new system:

(A +4A)(x +4x) = (y +4y)

We assume that the configuration of conjugate points was chosen in such a way
that the determinant of perturbed matrix A +4A still differs from zero.
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3. Computational analysis of algorithms

In the simple linear algorithm the eigenvalues of a square symmetric matrix
are calculated. To do so, using rotation, the matrix is reduced to the almost
triangular form. The QR algorithm for finding eigenvalues for almost triangular
matrix is applied [1]. The convergence of the QR algorithm is accelerated by means
of translations [1].

In the normalized linear algorithm the normalization of conjugate points is
required. In the last step of the algorithm a matrix inversion is applied.

In the direct algorithm the matrix equation solution of type Ax = y is required.
The improved Gauss method for matrices with a large number of zero elements is
applied.

4. The model of experiment

We fix an orthonormal basis {e1, e2, e3} of Euclidean space R3. We consider
the projective plane RP 2, the points of which are direct from R3. Let us fix an
affine chart S3 = {(x1, x2, x3) : x3 = 1} ⊂ RP 2 with a basis {e1, e2}. Without loss
of generality, we assume that the fields relating the projective mapping lie in S3

map.
We introduce scale units. Let us assume that the precise coordinates of the

first 4 conjugate points are located on the first screen with length and width equal
to 1. The center of the screen coincides with the origin (0, 0). We define a matrix
of a projective mapping up to the scalar multiplication factor.

The experiment starts with the generation of the exact coordinates on the first
screen. Under the influence of a given exact projective mapping matrix, we get new
coordinates on the second screen.

After the preparatory phase the coordinates perturbations are generated. In
our experiment these perturbations are independent normally distributed random
variables with zero mean and variance σ2, where 3σ = ε, where ε characterizes the
error budget. We perturb only the first two coordinates of conjugate points, as
the third coordinate of each point is equal to 1 (for the first four due to the affine
chart, for a second four due to normalization of the third coordinate). After that
the projective mapping matrix is calculated for each algorithm.

The sample of N = 106 eights perturbed coordinates of conjugate points is
generated. The accuracy of projective mapping, characterized by the deviation
from the mean matrix

F̄ =
1
n

n∑

i=1

Fi

and

S2
n =

1
n

n∑

i=1

‖Fi − F̄‖2,

is being estimated. The speed of the algorithms is being calculated.
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We use different types of precision given matrices of size 3× 3. The following
cases have been considered:
• Plane motion case.

This case includes the following matrices: rotation matrices, translation ma-
trices and composition of rotation and translation matrices.
• Perspective distortion case.
• Arbitrary case.

5. Results

The following conclusions were obtained:
• The direct algorithm shows better speed than the linear algorithms.

Several hundreds of experiments were performed. All experiments showed that
the direct algorithm is approximately five times faster than linear algorithms. As
a typical example, to present the results for the randomly generated matrix of
arbitrary type (Figure 3)1.

Fig. 3. Execution time (vertical axis) and the error estimation (horizontal axis). Red line rep-
resents the elapsed time of normalized linear algorithm (the slowest), blue the elapsed time of
simple linear algorithm, and green depicts the elapsed time of direct algorithm (the fastest).

• The hypothesis of Nosovskíı and Skripka that their proposed direct algorithm
is the most accurate to perturbation coordinates of conjugate points has been
confirmed.

Plane motion case

There were many experiments for the three different types of projective map-
ping matrices:
• Rotation matrices.

1The colours can be seen in the electronic versions of this paper on the sites of Matematički
Vesnik.
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• Translation matrices.
• Composition of rotation and translation matrices.

Fig. 4. Arbitrary image

Below the results are presented for all three types (see Figures 4 and 5). The
results of algorithms are represented by Figure 6. For each algorithm accuracy is
represented as a strip, the lower limit of which is characterized by the deviation
from F̃ (color: simple linear algorithm is orange, normalized linear algorithm is red
and direct algorithm is green), and the upper limit is characterized by three times
of size of S2

n.

(a) (b)

(c)

Fig. 5. Three types of matrices: (a) rotation matrix (by thirty degrees); (b) translation matrix

(2D displacement vector); (c) composition of rotation and translation matrices (rotation by ninety

degrees and 2D displacement vector)

The researched algorithms show the same results for ε ≤ 1e− 5, and the value
of S2

n vanishes. After increasing the value of ε to 1e− 2 (approximately 1% of the
screen size) direct algorithm demonstrates the best results (see Figure 6).
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(a) (b)

(c)

Fig. 6. Results for three types of matrices: (a) rotation matrix; (b) translation matrix; (c) com-

position of rotation and translation matrices

Perspective distortion case
There were many experiments for one type of projective transformation ma-

trices (Figure 7).

(a) (b)

Fig. 7. (a) Distorted perspective; (b) Corrected perspective

The results of algorithms are represented by Figure 8. As in the previous case,
accuracy is represented as a strip with color-marked at the upper left corner of each
graph. The graph shows that direct algorithm demonstrates the best results (see
Figure 8).
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Fig. 8. Result for matrix of perspective distortion

Arbitrary case

The results of algorithms for two randomly generated matrices of arbitrary
type are represented by Figure 9. On the left graph algorithms show similar results
for ε = 1e − 7, and on the right graph for ε = 1e − 6 the strip degenerates to the
line. For other values of ε direct algorithm works with the same accuracy as linear
algorithms (Figure 9).

(a) (b)

Fig. 9. Results for two randomly generated matrices: (a) First random matrix; (b) Second random

matrix

6. Conclusion

The hypothesis of Nosovskíı and Skripka that direct algorithm is the fastest
and most robust algorithm among known ones for calculating projective mapping
was confirmed by computer simulation.

Programs written in the C++ computer language produce new results in the
field of gluing flat images.
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